ROBERT H. MACARTHUR AWARD

Henry Wilbur

The Robert H. MacArthur Award is given in alternate years to an established ecologist in mid-career for meritorious contributions to ecology, in the expectation of continued, outstanding ecological research. Henry Wilbur, this year’s MacArthur Award recipient, has played a major role in the conceptual evolution of ecology through his early and convincing advocacy of rigorous experimental protocols and factorial designs in the study of interspecific interactions. His dissertation and subsequent experimental studies on the organization of amphibian communities, in conjunction with that of his students, constitute one of the benchmarks of modern community ecology. These mesocosm studies, generally focused on the interplay between the processes of competition and predation, obviously lend themselves to analytical rigor and point towards the challenge of adding increased naturalness. They have also fostered major contributions to our understanding of life history phe- nomena: metamorphosis, phenotypic plasticity, and life cycle complexity. His current interests include the analysis of interactions in multi-species assemblages. He is a mid-career, internationally respected ecologist noted for his talents as a naturalist and experimentalist and for his statistical acumen.


MacArthur Award Subcommittee
R. T. Paine (Chair)
Mimi Koehl
John Gilbert
Dick Root
Katie Lajtha
Kay Gross

HONORARY MEMBERSHIP AWARD

Honorary Membership is awarded to a distinguished ecologist who has made exceptional contributions to ecology and whose principal residence and site of ecological research are outside the United States and Canada. This year the ESA awards Honorary Membership to Dr. Z. Maciej Gliwicz, Professor of Ecology and Head of the Department of Hydrobiology at the University of Warsaw, Poland.

Over the past three decades Maciej Gliwicz has had an extraordinary influence on the development of ideas in the study of plankton. In the 1960s he demonstrated his imagination and experimental elegance by using sand grains of a range of sizes to show that different species of zooplankton select different sizes of food—this at a time when polystyrene beads had not yet appeared, much less become standard, for plankton feeding studies. He showed us the way in that study, and has been doing so ever since. Other landmark papers include his test of the size-efficiency hypothesis, his demonstration of the effects of zooplanktivorous fish on lunar cycles of zooplankton density, his remarkable elucidation of the evolution of vertical migration in copepods in lakes stocked with fish for different periods, and his extensive studies of zooplankton feeding behavior, including his early demon-