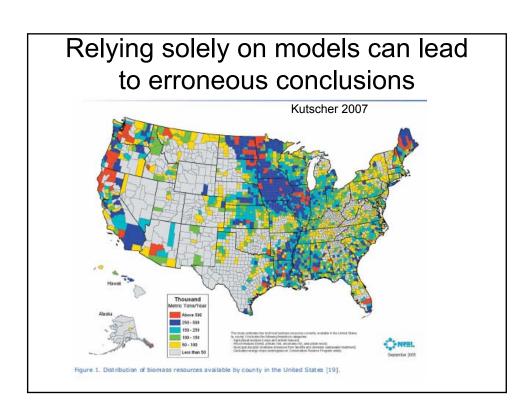
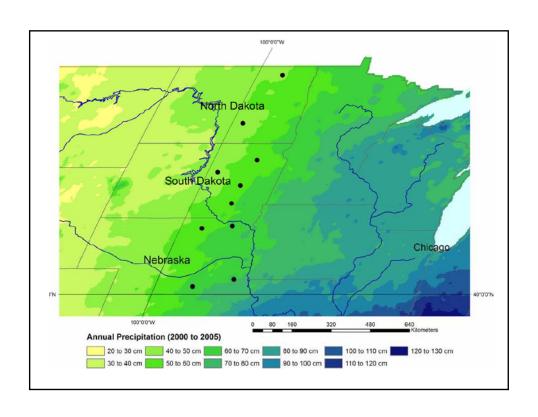
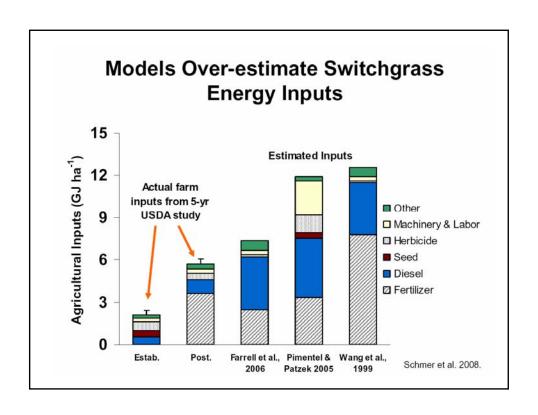
### Is Rangeland Biofuel Production Ecologically Sustainable?

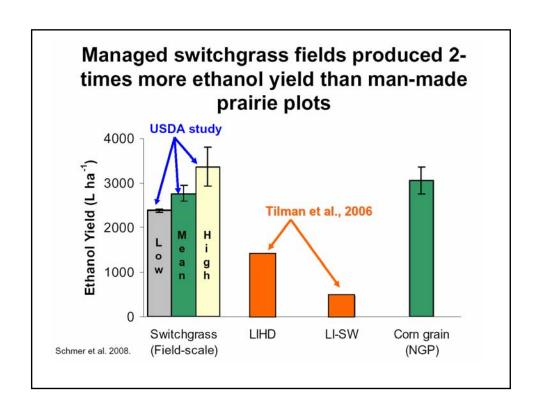

Linda L. Wallace, University of Oklahoma Rob Mitchell, USDA-ARS, Lincoln Nebraska

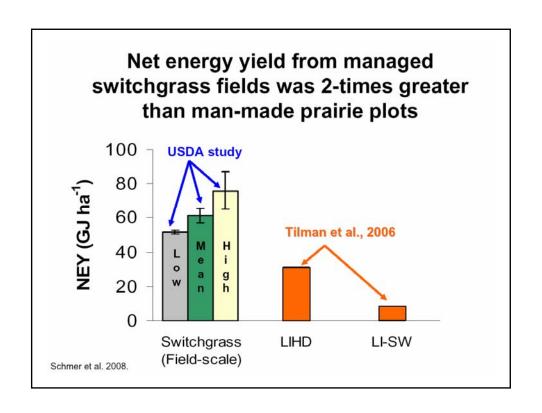
### **Ecological Sustainability**

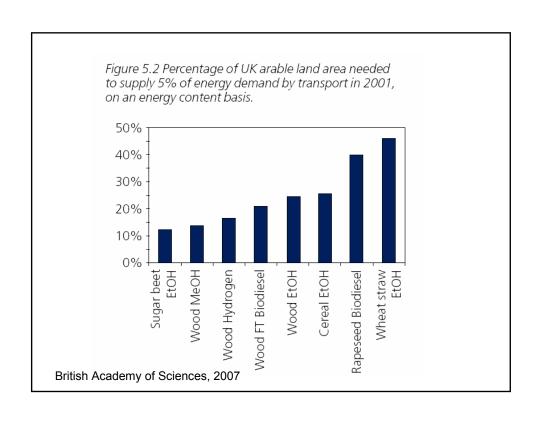
- Recent statement released by the Ecological Society of America states that sustainable biofuel production must not negatively affect
  - Energy flow
  - Nutrient cycles
  - Ecosystem services including biodiversity, habitat use, clean air and clean water (quality & quantity)


### **Energy Analysis**


- Most work in this area has involved modeling studies with little empirical work
- No empirical work done on native prairie vs planted monoculture or polyculture
- Largest single empirical study is Schmer et al., 2008





### Farm-scale Switchgrass Study


- A farm-scale trial was initiated in 2000 to determine economics and energy analysis for producing switchgrass.
- 10 locations in NE, SD, & ND ranging from 8 to 23 acres.
- Managed and harvested with commercial farm equipment.
- Fields were harvested in early August or after a killing frost.
- Producers recorded all inputs.
- · Costs include labor & land.

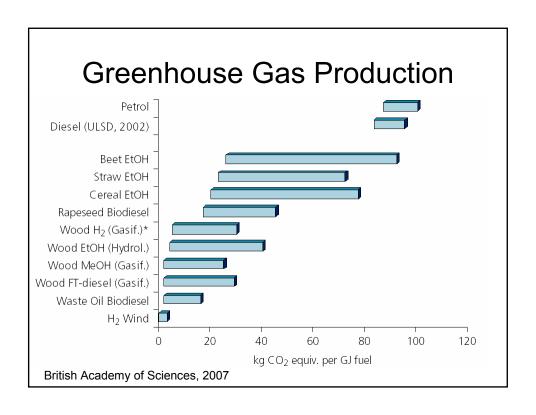


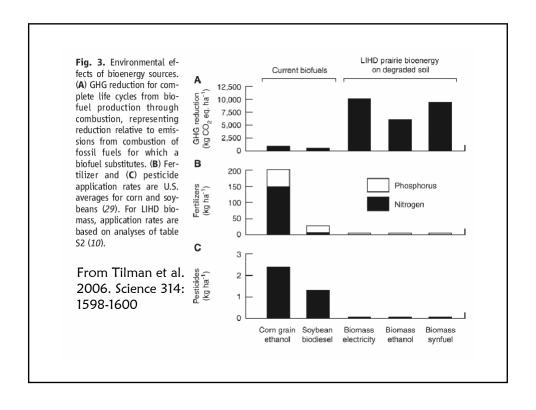


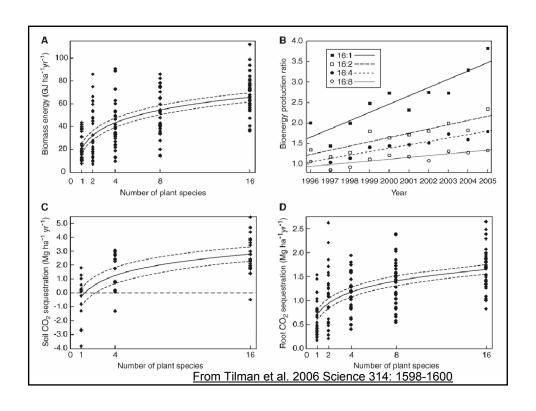


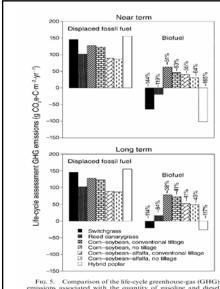





Land required to produce feedstock for a 50 million gallon (190 ML) cellulosic ethanol plant in a 25 mile (40 km) radius


| Feedstock Yield<br>tons/acre (Mg/ha) | Acres   | % of Land Area |  |
|--------------------------------------|---------|----------------|--|
| 1 (2.2)                              | 625,000 | 50             |  |
| 2 (4.5)                              | 312,500 | 25             |  |
| 3 (6.7)                              | 208,333 | 17             |  |
| 4 (9.0)                              | 156,250 | 12             |  |
| 5 (11.2)                             | 125,000 | 10             |  |
| 7.5 (16.8)                           | 83,333  | 6.6            |  |
| 10 (22.4)                            | 62,500  | 5              |  |


A 50 million gallon plant requires 625,000 tons of feedstock/year at 80 gallons/ton.

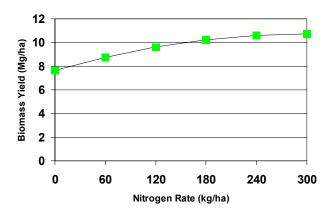

### **Nutrient Cycles**

- Two key cycles to consider are carbon and nitrogen cycles
- Whether or not monoculture rangeland biofuels (primarily switchgrass) are carbon neutral or not also not well-studied empirically. Most studies are modeling efforts
- Nitrogen cycle effects strongly influenced by amount and type of fertilizer used
- Almost no work done on hydrologic effects of feedstock production










## Fig. 5. Comparison of the life-cycle greenhouse-gas (GHG) emissions associated with the quantity of gasoline and diesel displaced by entaned and biodiest produced from the cropping systems (displaced fossil-fuel C [ $C_{aff}$ ]) with the quantity of GHG emissions associated with the life cycle of biofuel (ethanol and biodiesel) production (feedstock-conversion C [ $C_{bC}$ ]+ $C_{clit}$ , + direct $C_{bC}$ , + indirect $C_{bC}$ ; + themical-inputs C [ $C_{cl}$ ]+ agricultural-machinery C [ $C_{ck}$ ]+ $C_{bC}$ ], near-term includes change in system C ( $AC_{csp}$ ). The percentage reduction in GHG emissions was calculated as the difference in the biofuel produced by a given crop expressed as a percentage of the displaced fossil-fuel emissions.

# Life-cycle Greenhouse gas emissions from different monoculture systems

Adler et al. 2007

### Switchgrass N Response Curve

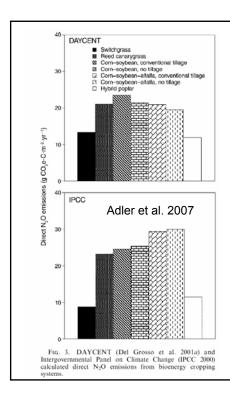


Switchgrass N response curve developed from first harvest 'Cave-in-Rock' switchgrass grown in 1994 and 1995 at Mead, NE and Ames, IA (Vogel et al., 2002. Agron. J. 94:413-420).

### Fertilizer trade off: Yield v. Ash

TABLE 6
Response of concentrations of N, P and K in total dry matter to additions of these nutrients as fertilizer

| Nitrogen <sup>1</sup>                      |                                    | Potassium <sup>2</sup> |                                            |                                    | Phosphorus <sup>3</sup> |                                            |                                    |                       |
|--------------------------------------------|------------------------------------|------------------------|--------------------------------------------|------------------------------------|-------------------------|--------------------------------------------|------------------------------------|-----------------------|
| Annual<br>fertilizer addition<br>(kg N/ha) | Annual DM<br>production<br>(Mg/ha) | % N<br>in total<br>DM  | Annual<br>fertilizer addition<br>(kg K/ha) | Annual DM<br>production<br>(Mg/ha) | % K<br>in total<br>DM   | Annual<br>fertilizer addition<br>(kg P/ha) | Annual DM<br>production<br>(Mg/ha) | % P<br>in total<br>DM |
| 0                                          | 27.9                               | 0.61                   | 0                                          | 14.4                               | 0.52                    | 0                                          | 24.2                               | 0.12                  |
| 500                                        | 44.5                               | 0.90                   | 224                                        | 32.7                               | 0.70                    | 73                                         | 35.1                               | 0.14                  |
| 1000                                       | 41.8                               | 1.23                   | 448                                        | 38.0                               | 1.05                    | 147                                        | 37.8                               | 0.17                  |
| 2000                                       | 44.5                               | 1.43                   | 896                                        | 42.6                               | 1.70                    |                                            |                                    |                       |
|                                            |                                    |                        | 1792                                       | 48.8                               | 2.50                    |                                            |                                    |                       |


<sup>&</sup>lt;sup>1</sup>Data from Ferraris, 1980.

Samson et al., 2005

<sup>3</sup>Data from Figarella et al., 1964.

"Nitrogen rates of 56 and 112 kg ha $^{-1}$  tended to boost yield without promoting large increases in grass and broadleaf weed species." (Mulkey et al. 2008) - Also found that these rates produced least ash for plants harvested after killing frost

<sup>&</sup>lt;sup>2</sup>Data from Vicente-Chandler et al., 1962.



### Fertilizer trade off: Yield v. N<sub>2</sub>O

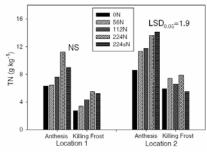



Fig. 1. Nitrogen rate × harvest timing interaction effect on total N (TN) concentrations of two warms-season grass mixtures in South Dakota. Values are averaged across harvest year. Fisher's protected LSD (0.05) values, to compare across N rate and harvest time, are shown above the respective bars for each Location. NS = not significant at 0.05 level of probability.

\*\*Mathematical Conference of the Probability\*\*

\*\*Mathematical Conference of the Probability

Mulkey et al. 2008

#### Effects on Nitrogen Cycle: NO<sub>x</sub> Corn E85 ■Corn, EtOH in E85 Cell. EtOH/GTCC, E85 □Cell. EtOH/GTCC, EtOH in E85 Cell. EtOH/Rankine, E85 ☑ Cell. EtOH/Rankine, EtOH in E85 Cell. EtOH/FTD/GTCC, E85 ☑ Cell. EtOH/FTD/GTCC, EtOH in E85 200% 150% 100% 50% 0% -50% -100% VOC PM10 Figure 6. Percent change in total criteria pollutant emissions from Bio-EtOH production options relative to gasoline in ICE SI vehicles per mile ren (negative value means reduction). Wu et al. 2006

### **Ecosystem Services**

- Biodiversity
  - Increases in resistance and resilience of systems
  - Protection of populations and species
- Clean Air, Water
  - Reductions in erosion
- Increases in trophic diversity
  - Habitat usage

### Grassland response to global warming



|         | 1 m     |     |
|---------|---------|-----|
| control | clipped | 1 m |
| clipped | control |     |

Work done at
 University of
 Oklahoma by Dr. Yiqi
 Luo and his
 colleagues has shown
 that grassland
 ecosystems are
 actually very tolerant
 of global warming

### Switchgrass response to global change

- Unpublished data from Wallace show that switchgrass went extinct in low productivity site after exposure to drought and warming.
- By looking at production of all species present (over 60) we can see that system as a whole was less effected by drought and warming than were individual species.

### Switchgrass Physiology

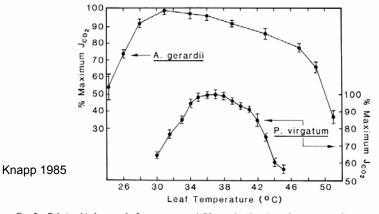
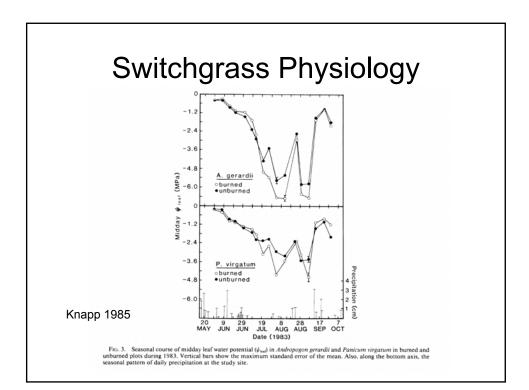




Fig. 2. Relationship between leaf temperature and  $CO_2$  uptake  $(J_{CO_2})$  in Andropogon gerardii and Panicum virgatum in June 1983. Data for burned and unburned sites were pooled and vertical bars represent  $\pm 1$  standard error of the mean and n = 6-8 leaves from separate tillers. The vapor pressure deficit of air entering the chamber was 1.5–2.0 kPa and was not held constant at higher temperatures.



### Studies of mixtures

 Mulkey et al. 2008 found that a mixture of big bluestem and switchgrass outperformed switchgrass alone. Found that indiangrass was less competitive and disappeared from the mixture in two SD sites.

### **Habitat Use**

#### **Species Diversity**

- Insects
- Wasp parasitoids
- Soil macrofauna
- Pollinators

#### Structural Diversity

- Birds
- Small mammals
- · Soil macrofauna

### Erosion and nutrient loss

- Growth of perennial rather than annual feedstocks dramatically cuts erosion losses
- Growth of diverse feedstocks and their effects on erosion is not well studied in comparison with monoculture plots

### Recommendations

- Head to head comparisons of monoculture v polyculture feedstock production systems are extremely rare – particularly looking at native grasslands or managed hay meadows
  - Compare rates of production, inputs required, net economic gain, net ecosystem stability, nutrient and energy flows and ecosystem services across a number of years and in multiple locations

### Recommendations

- Take data from this large synoptic sampling design and input into predictive, mechanistic models to see
  - How production systems fare under different disturbances
  - How production systems fare under climate change
  - How production systems fare under different economic climates, as well
- Look for ecological and economic set points and see what relationships one has to the other